
611

0022-4715/03/0300-0611/0 © 2003 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 110, Nos. 3–6, March 2003 (© 2003)

Cross-Over Between First-Order and Critical
Wetting at the Liquid-Vapour Interface of
n-Alkane/Methanol Mixtures: Tricritical
Wetting and Critical Prewetting

A. I. Posazhennikova,1 J. O. Indekeu,1 D. Ross,2 D. Bonn,3 and J. Meunier3

1 Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, B-3001
Leuven, Belgium; e-mail: joseph.indekeu@fys.kuleuven.ac.be

2 Process Measurements, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899.

3 Laboratoire de Physique Statistique, Ecole Normale Supérieure, F-75231 Paris cedex 05,
France.

Received November 6, 2001; revised May 27, 2002

A simple mean-field theory is presented which describes the basic observations
of recent experiments revealing rich wetting behaviour of n-alkane/methanol
mixtures at the liquid-vapour interface. The theory, qualitative and in part
heuristic, is based on a microscopic lattice-gas model from which a Cahn–
Landau approach is distilled. Besides the physics associated with the short-range
components of the intermolecular interactions, effects of the long-range tails of
the net van der Waals forces between interfaces are also taken into account.
Further, gravitational thinning of the wetting phase is incorporated. The cal-
culation of the spreading coefficient S is extended to the experimentally relevant
situation in which the bulk adsorbate is slightly away from two-phase coexis-
tence due to gravity. Analysis of this novel approximation to S for systems with
short-range forces leads to the conclusion that the surface specific heat expo-
nents as=1, 1/2, and 0, for first-order wetting, tricritical wetting and critical
wetting, respectively, are robust with respect to (weak) gravitational thinning,
consistently with experiment. For three different systems the adsorption is cal-
culated as a function of temperature and compared with the experimentally
measured ellipticity. Including weak long-range forces which favour wetting in
the theory does not visibly alter the critical wetting transition for the nonane/
methanol mixture, in contrast with the generic expectation of first-order wetting
for such systems, but in good agreement with experiment. For decane/methanol



weak long-range forces bring the transition very close to the prewetting critical
point, leading to an adsorption behaviour closely reminiscent of short-range
tricritical wetting, observed experimentally for alkane chain length between 9.6
and 10. Finally, for undecane/methanol the transition is clearly of first order.
First-order wetting is also seen in the experiment.

KEY WORDS: Wetting phase transitions; critical wetting; tricritical wetting;
long-range forces; binary liquid mixtures; adsorption.

1. INTRODUCTION AND PERSPECTIVE

Recent experiments have shown that a binary liquid mixture of linear or
‘‘normal’’ alkane and methanol in equilibrium with their common vapour
displays a first-order wetting transition if the wetting temperature Tw is well
below the consolute-point temperature Tc and a ‘‘short-range critical
wetting’’ transition if Tw is very close to Tc

(1, 2). The latter is the case for
n-nonane and methanol. The ‘‘substrate’’ in these wetting experiments is
the saturated vapour phase. A recent review covers various examples of
experimentally observed first-order or continuous wetting transitions in
liquid mixtures. (3)

The observation of short-range critical wetting in adsorbed binary
liquid mixtures is surprising, to say the least. Indeed, due to the presence of
van der Waals forces, which induce an algebraically decaying long-ranged
surface-interface interaction favouring wetting, a first-order wetting transi-
tion should be expected. (4–8, 11) Alternatively, if the van der Waals forces
oppose wetting, no wetting transition should occur, unless the leading van
der Waals interaction amplitude changes sign at some temperature, result-
ing in ‘‘long-range critical wetting,’’ (8–12) observed experimentally in pentane
on water. (13) However, within the experimentally accessible range of small
film thicknesses (up to 100 Å) the van der Waals forces can be neglected
compared to exponentially decaying mean-field (MF) and fluctuation-
induced (FI) interactions. (1, 2) The range of the MF and FI interactions is
determined by the bulk correlation length, which can become as large as
the wavelength of visible light very close to the upper consolute point,
at Tc, where the two fluid phases become identical.

The experiments, and in particular the measured value of the surface
specific-heat exponent, agree with the predictions of the mean-field theory,
and disagree strongly with renormalization-group predictions based on a
capillary-wave model. (14–17) Furthermore, Monte Carlo simulations of short-
range critical wetting (18) also disagree with the RG predictions but agree
with the experiments. This behaviour can be understood in the light of
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more sophisticated interface models (19–21) which indicate that the critical
region around the transition, in which deviations from MF behaviour show
up for the surface specific heat exponent, is too small to be relevant for
either experiment or simulation. In other words, mean-field theory should
be an excellent description of simulations and experiments of critical
wetting with short-ranged forces. The experimental observations of mean-
field like behaviour are thus entirely in keeping with the latest RG work,
since in particular the mass density difference between the wetting phase
and the surrounding bulk phase stop the parallel correlation length from
getting big enough to see fluctuation effects. We shall return in detail to the
relevance of this mass density difference in what follows.

Our aim in this paper is to give a theoretical description of the cross-
over between the regimes of first-order wetting and ‘‘short-range critical
wetting’’ in this system, which for purely short-range forces would occur via a
tricritical wetting point. (22) In view of the observed consistency between
experiment and MF theory, and the predictions for the width of the critical
region discussed above, we adopt the point of view of the classical theory
of Cahn–Landau type. We include the van der Waals forces as a weak per-
turbation and also take into account the gravitational thinning of the
wetting layer due to the difference in the mass densities of the liquid
phases. We neglect thermal fluctuation effects, but incorporate the
influence of the vicinity of bulk criticality at the MF level. That is, the
divergence of the bulk correlation length is included in the theory, but with
the MF value for the critical exponent. In this way, the interplay of wetting
and critical adsorption is allowed for.

This paper is organized as follows. In Section 2 we present the micro-
scopic lattice-gas model for the alkane/methanol/vapour system and
derive the Ising model coupling constants and fields from the intermole-
cular and chemical potentials. In Section 3 we extract the continuum
Cahn–Landau theory from the Ising model near the bulk critical point.
In Section 4 we study wetting layer thicknesses, adsorptions, surface free
energies, spreading coefficients and critical exponents for the regimes of
first-order, tricritical and critical wetting within the model featuring only
short range forces. The cross-over from first-order to critical wetting
including long-range forces in the theory is investigated in Section 5. There
we calculate the system parameters corresponding to nonane/methanol,
decane/methanol and undecane/methanol and derive adsorptions and
spreading coefficients assuming the long-range forces to be a weak pertur-
bation. We compare our results with the experiments and investigate
whether we can interpret them in terms of short-range tricritical wetting or,
alternatively, in terms of prewetting criticality induced by long-range
forces. In Section 6 we present our conclusions.
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2. MICROSCOPIC LATTICE-GAS MODEL

In this section we adopt the philosophy of lattice-gas modeling which
is often applied to binary alloys etc., as exemplified in the lectures of
Yeomans. (23) We consider a nearest-neighbour spin-1 Ising model on a
3-dimensional simple cubic (SC) or face-centered cubic (FCC) lattice. The
spin variable takes the value+1 (methanol molecule), − 1 (alkane mole-
cule) or 0 (vacancy). The methanol-rich phase sits at the bottom of the
recipient, the alkane-rich phase is in the middle, and the vapour is on top.

Given that our entire approach is based at mean-field level it would be
appropriate to start from a density-functional theory of a binary mixture
with long-ranged fluid-fluid forces, as can be derived starting from this
spin-1 model following the works of Dietrich and Latz (24) and Getta and
Dietrich. (12) However, the application of this theory to non-spherical mole-
cules such as alkanes, and to polar molecules such as methanol, would only
be a first approximation, so that the difficult calculations inherent in this
approach would still not be sufficiently reliable. We therefore feel the
necessity to propose a much simpler strategy to get a handle on the cross-
over from first-order to continuous wetting in the presence of long-range
forces.

We introduce pair interaction energies EMM for methanol-methanol,
EAA for alkane-alkane, and EAM for alkane-methanol pairs at nearest-
neighbour distance. The AA energy corresponds in a first approximation to
the Lennard-Jones potential well depth for the nonpolar alkane molecules
and the MM energy can be given either by the Lennard-Jones or, more
appropriately, by the Stockmayer potential well depth for the polar
methanol molecules. (25) Furthermore, we introduce the chemical potentials
mM and mA for methanol and alkane particles, respectively. We make the
rough approximation that a single lattice constant s suffices for the model,
while in reality the distances of closest approach, reflected, e.g., by Lennard-
Jones diameters sMM and sAA can differ for methanol and alkane mole-
cules. Further, we ignore the chain conformation of the n-alkanes and treat
them effectively as spheres.

The spin-1 Ising model Hamiltonian reads

H(s)=−J C
OijP

sisj − H C
i

si − D C
OijP

(sis
2
j +sjs

2
i ) − E C

OijP
s2

i s2
j − M C

i
s2

i ,
(2.1)

where the square brackets OijP indicate that the sums are over nearest
neighbours on the lattice. The Ising couplings can easily be determined
from the pair energies and chemical potentials, considering the following
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pairs: vacancy-vacancy, methanol-vacancy, alkane-vacancy, methanol-
methanol, alkane-alkane and alkane-methanol. This leads to the relations

J=(EMM+EAA − 2EAM)/4 (2.2)

H=(mM − mA)/2 (2.3)

D=(EMM − EAA)/4 (2.4)

E=(EMM+EAA+2EAM)/4 (2.5)

M=(mA+mM)/2 (2.6)

Since the vapour phase is dilute and the liquid phases are dense, we
make the very reasonable approximation that the liquid is free of vacancies
and that the liquid-vapour interface is sharp. This allows us to map the
spin-1 model onto a spin-1/2 model with a free surface. The vapour phase
is thus replaced by an inert spectator phase and vacancies no longer play a
role. Therefore, inside the adsorbate we have s2

i =1 everywhere, and our
model reduces to one with spin 1/2 and bulk Hamiltonian

Hbulk=−J C
OijP

sisj − H C
i

si − D C
OijP

(si+sj)+constant (2.7)

For a lattice with coordination number q (q=6 for SC and 12 for FCC) we
can rewrite this and drop the irrelevant constant, so that

Hbulk=−J C
OijP

sisj − Hbulk C
i

si (2.8)

where the bulk field is given by

Hbulk=H+qD (2.9)

Bulk two-phase coexistence between the alkane-rich and methanol-rich
phases is reached for Hbulk=0 in this model.

WenowproceedtoderivethesurfacecontributiontotheHamiltonian,Hsurf .
The surface layer of spins is different from layers in the bulk in that there
are missing bonds. For the SC lattice there is 1 nearest neighbour missing
per surface site and for FCC there are 4 missing bonds, assuming a (100)
surface for simplicity. For a (111) surface there would be 3 missing bonds.
This leads to the result, for the surface layer,

Hsurf=−J C
OijP

sisj − Hsurf C
i

si (2.10)
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where the surface field Hsurf takes the form

Hsurf=Hbulk − mD (2.11)

with m=1 for the SC lattice, and m=4 for the FCC lattice. At, or very
close to, bulk coexistence Hbulk % 0 so that the surface field is governed
by D. In particular, the surface preferentially adsorbs that species for
which the pair binding energy is smallest (in absolute value), in order to
minimize the energy increase due to broken bonds.

We can estimate the leading surface field contribution D as follows.
For n-alkanes we inspect the liquid-gas critical temperatures TLG

c and adopt
the simple rule EAA=0.75kBTLG

c for obtaining the Lennard-Jones potential
well depth. (25) This leads to the following estimates, from n-pentane (C 5H12)
to n-undecane (C 11H 24): EAA/kB=353 K (pentane), 380 K (hexane), 405 K
(heptane), 427 K (octane), 446 K (nonane), 464 K (decane), 480 K (unde-
cane). For the polar molecule methanol, either we can use the Lennard-
Jones parameter derived using the same rule, which leads to EMM/kB=
385 K, or we can employ the Stockmayer potential parameter ES

MM/kB=
417 K, (25) which is more suitable for polar molecules. Using (2.4) we see
that the surface field changes sign between hexane and heptane, when the
Lennard-Jones parameter is used for methanol. On the other hand, the sign
reversal of D occurs between heptane and octane when the Stockmayer
parameter is adopted. Experimentally, for short chain length of alkane the
alkane-rich phase is preferentially adsorbed at the vapour phase, while for
long chain length the methanol-rich phase is preferred. (1, 2) This is in
agreement with the microscopic model, which predicts D > 0 for short
alkanes. Experimentally, the reversal of preferential adsorption takes place
(approximately) for octane, which agrees well with the theoretical predic-
tion based on the Stockmayer potential parameter for methanol, which we
will therefore use from now on.

3. CONTINUUM CAHN–LANDAU THEORY

In this section we apply the mean-field approximation to the Ising
Hamiltonian derived in the previous section, and subsequently make the
continuum approximation to obtain the Cahn–Landau theory. We follow
closely the derivation of Maritan, Langie, and Indekeu, (26) valid for slowly
varying concentration profiles and for temperatures close to the consolute
point of the alkane/methanol mixture. Additionally, we take into account
that the mixture is at, or close to, two-phase coexistence in bulk.

Let N be the number of cells in the lattice-gas representation of our
system and F the free energy. We have N=V/s3, where V is the volume
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and s is the representative molecular diameter, which serves as the lattice
constant. The temperature at the critical point of the binary liquid mixture,
or upper consolute point, is denoted by Tc. We consider the reduced free
energy density f=F/(NkBTc) as a function of the order parameter f. In
our system f is the concentration difference of methanol and alkane in the
mixture, xM − xA, minus the critical concentration difference, xM, c − xA, c.
We have, from F=U − TS,

f(f)=u(f) − Ts(f)/Tc (3.1)

with energy density

u(f)=−f2/2 − hf+constant (3.2)

where h stands for the reduced bulk field, h=Hbulk/kBTc. The entropy
density, (26) to 4th order in f, is given by

s(f)=ln 2 − f2/2 − f4/12 (3.3)

We obtain

f(f)=constant − hf − (1 − T/Tc) f2/2+Tf4/(12Tc) (3.4)

Note that the model is symmetric with respect to the interchange of (h, f)
and (−h, −f). This symmetry is approximately valid for binary liquid mix-
tures near Tc.

For h=0 we obtain the order parameter value fb for bulk coexistence
from df/df=0. This leads to fb= ± f0, with, for T/Tc % 1,

f2
0=3(1 − T/Tc) (3.5)

The free energy near Tc can be rewritten as

f(f)=constant − hf+(f2 − f2
0)2/12 (3.6)

In general, fb is found by minimizing f(f), and taking that solution of the
cubic equation which has largest modulus. The other solutions, if real,
correspond to metastable and saddle points. A bulk spinodal results when
the latter two coincide.

The Cahn–Landau surface free-energy functional can be written in the
form (22, 27)

c[f]=F
.

0
dz 3c2

4
1df

dz
22

+f(f(z))4− h1f1 − g
f2

1

2
(3.7)
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where z \ 0 measures the vertical distance from the liquid-vapour interface
downwards into the binary liquid mixture. The distance is in units of the
lattice spacing, or representative molecular diameter, in the underlying
microscopic model. The last two terms constitute a surface contact energy
which depends on the surface value of the order parameter, f1=f(z=0),
and will be discussed later. We remark that this functional gives only the
surface free energy excess with respect to a reference value c0 that is inde-
pendent of f, but depends on the temperature and the material parameters
of substrate and adsorbate. Therefore, the functional c[f] does not fulfill,
for example, the positivity requirement of interfacial tensions in general.
Since we will need to calculate only differences of surface free energies of
substrate/adsorbate configurations, the unknown c0 drops out.

Having defined the function f(f) previously, we now proceed to relate
the coefficient of the gradient squared, c2/4, to microscopic interaction
energies and thermodynamic quantities. This was done in ref. 26 with the
result

c2/2=J/kBTc — Kc (3.8)

For the 3-dimensional Ising model on the SC lattice, Kc % 0.222, while on
the FCC lattice, Kc % 0.102. For comparison, the mean-field value for the
critical reduced nearest-neighbour coupling is Kc=1/q, where q is the
coordination number. This gives Kc=0.167 for SC, Kc=0.125 for BCC,
and Kc=0.083 for FCC lattices, in the mean-field theory which we
presently employ.

We now address the question whether we can estimate J theoretically.
Therefore we turn to the microscopic equation (2.2) relating J to the
molecular pair potentials. The ‘‘mixed’’ pair energy EAM is still to be
determined. This is a non-trivial task, and we limit ourselves here to pro-
posing reasonable arguments for obtaining a reliable order of magnitude.
This exercise is without quantitative consequences for our theory, since we
will not use this estimate further on, but will take experimental surface
tension data as input for estimating J more reliably.

To proceed systematically we follow Israelachvili (28) and compare three
classes of molecules: non-polar molecules interacting only through disper-
sion forces, polar molecules interacting through dispersion and dipolar
forces, and polar molecules interacting also through hydrogen-bonding in
addition to the other forces. For example, ethane (CH 3CH 3), formaldehyde
(HCHO) and methanol (CH3OH) have similar size and weight, but are non-
polar, polar, and polar with H-bonds, respectively. The stronger is the
interaction, the higher is the liquid-gas critical temperature of the pure
component. For example, for ethane TLG

c =305 K, for formaldehyde the
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dipole-dipole interaction leads to TLG
c =408 K, and additional hydrogen-

bonding leads to TLG
c =513 K for methanol.

For unlike molecules within the same interaction class, the Lorentz–
Berthelot combining rule, (29)

EAB=`EAAEBB (3.9)

is often a reasonable approximation. However, for pairs composed of dis-
similar molecules belonging to different classes, this rule can be a very poor
approximation leading to ridiculously low estimates of the consolute-point
temperature, especially when hydrogen-bonding occurs in one of the two
components. The most dramatic manifestation of this ‘‘non-additivity’’ of
interactions is the hydrophobic effect. When a non-polar component is
mixed with water, the disruption of the hydrogen-bonded water network is
so costly in energy that, instead of mixing, phase separation is likely to
occur. In this case the mixed interaction strength EAB is smaller than either
one of the pure values EAA or EBB, clearly violating (3.9).

We infer from this that a qualitatively similar phenomenon should
occur when alkanes are mixed with methanol, the latter playing the role of
water in the previous example. The network in this case consists of one-
dimensional chains. (28) The mixed alkane-methanol interaction lacks the
dipole-dipole and hydrogen-bonding contributions, and to a reasonable
approximation one can say that an alkane molecule sees a methanol mole-
cule as if it were a molecule of the same weight and size as methanol, but
interacting only through dispersion forces. Therefore, for determining the
mixed pair interaction, we make the rough approximation to replace
methanol effectively by ethane, and then we apply the Lorentz–Berthelot
rule. In doing so, we also neglect the dipole/induced-dipole contribution
(induction force) to the mixed-pair van der Waals interaction. However,
the induction force is usually small compared to the dispersion force. (28)

For ethane, we estimate EEE/kB=0.75TLG
c , which gives 229 K. Using

likewise the Lennard-Jones parameters for the other n-alkanes and adopt-
ing the rule (3.9) with ethane playing the role of methanol, this amounts
to the following mixed pair parameters for alkane-methanol mixtures:
EAM/kB=284 K (pentane), 295 K (hexane), 305 K (heptane), 313 K
(octane), 320 K (nonane), 326 K (decane), and 332 K (undecane). Now the
nearest-neighbour couplings J can be determined, according to (2.2), with
the results: J/kB=50 K (pentane), 52 K (hexane), 53 K (heptane), 55 K
(octane), 56 K (nonane), 57 K (decane) and 58 K (undecane).

These values can be tested against the reported upper consolute tem-
peratures Tc (at ambient pressure) for alkane-methanol mixtures, (1, 2) which
are Tc=308 K (hexane), 324 K (heptane), 340 K (octane), 352 K (nonane),
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364 K (decane) and 376 K (undecane). The ratios Kc=J/kBTc are, respec-
tively, 0.169, 0.164, 0.162, 0.159, 0.157, and 0.154. These are very reason-
able, since they lie in between the Kc-values for SC and FCC packings, and
are very close to the mean-field value for the SC lattice. We conclude that
the simple estimates we have made of the Ising model coupling J, based on
approximate molecular pair energies, are consistent with the correct order
of magnitude for the consolute-point temperatures of the binary mixtures
and any reasonable choice of cubic lattice (FCC, BCC or SC) for the lattice
in the model.

A more accurate procedure for determining the parameter c, or
equivalently Kc, in (3.8) consists of comparing the experimentally measured
liquid-liquid interfacial tension with the theoretical expression, derived
within the Cahn–Landau theory (e.g., ref. 30),

cMA=c F
f0

−f0

df `f(f)=2c(1 − T/Tc)3/2 (3.10)

The critical exponent 3/2 is the mean-field value. In real fluids it is to be
replaced by 1.26, and also the amplitude is to be modified. In order to
obtain an estimate for the parameter c, we inspect published interfacial
tension data for the nonane/methanol mixture by Carrillo et al., (31) for
example. At T=298 K the measured interfacial tension is 1.47 ×
10−3 N/m. Alternatively, we can use the data obtained by Kahlweit
et al. (32) for octane and decane and interpolate linearly between them,
which leads to practically the same value 1.45 × 10−3 N/m. In order to
compare this to the dimensionless quantity cMA of the theory we need to
multiply this with the area of a unit cell in the lattice model, since the dis-
tance z is in these units, and to divide by kBTc, with Tc=352 K.

The lattice constant s is the representative nearest-neighbour distance
of a molecular pair. In the lattice model s is in principle determined
through the number density at the consolute point, through the relation

(rM+rA) s3=1, (3.11)

where rM(A) is the number of methanol (alkane) molecules per unit volume.
While this relation is, strictly speaking, reserved for T=Tc, it is actually
imposed for all T in the lattice approximation, since all the cells are filled
either by a M or an A particle. The s defined in this way lies in between the
molecular diameters of the two components, sM and sA, as we will illus-
trate for methanol and nonane in Section 5. In what follows we adopt a
simple approximation and just take the arithmetic mean, s=(sM+sA)/2.

For methanol sM % 3.65 Å (valid for both Lennard-Jones and
Stockmayer potentials), while for nonane we may deduce an effective
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diameter sA % 5.99 Å from the excluded volume or ‘‘hard-sphere’’ volume.
We adopt this useful approximation even if the molecules are of ellipsoidal
rather than spherical shape. (28, 29) The relation between the excluded volume
and the associated parameter b in the van der Waals equation of state is

b=2ps3/3, with b=kTLG
c /8PLG

c , (3.12)

where PLG
c is the critical pressure of the fluid. Note that if we use, e.g., the

more complicated Peng–Robinson equation of state, (33) a smaller diameter
sA % 5.11 Å is obtained. This value is almost certainly an underestimation,
because it leads to a molecular mass density of nonane that is higher than
that of methanol, in contradiction with the experimental fact that the
methanol-rich phase is heavier than the nonane-rich phase.

For the van der Waals equation of state we conclude s % 4.83 Å, by
taking the arithmetic average. The result for the dimensionless interfacial
tension is cMA=0.0706, using experimental data, (31) and cMA=0.0696,
interpolating between experimental data. (32) This leads to c=0.587 and
c=0.579, and hence Kc=0.173 and Kc=0.171, respectively. This is an
interesting result, close to the values appropriate to the lattices we con-
sidered, and very close to the mean-field value 1/6 for the SC lattice.
Alternatively, for the Peng–Robinson equation of state the results are
Kc=0.117 and Kc=0.113, respectively, which is close to the mean-field
value for the BCC lattice. While being aware of the quantitative sensitivity
of these results to the choice of equation of state, we expect to obtain a
qualitatively correct description by using the s obtained from the simplest
one (van der Waals).

We now turn to the identification of the surface field h1 and the
surface coupling enhancement g in the surface free-energy functional. For
the surface field we have the simple relation, (26)

h1=Hsurf/kBTc (3.13)

where Tc is the consolute-point temperature. For the enhancement we have,
for T/Tc % 1,

g=−mKc (3.14)

with m=1 for the SC lattice, (26) and m=4 for the FCC lattice. We
conclude that, since g < 0, first-order as well as critical wetting transitions
are possible, in principle, as was first demonstrated by Nakanishi and
Fisher, (22) who derived the global wetting phase diagrams within Cahn–
Landau theory.
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4. CROSSOVER FROM FIRST-ORDER TO CRITICAL WETTING:

SHORT-RANGE FORCES

The Cahn–Landau theory developed so far does not include the effects
of the ‘‘tails’’ of the intermolecular van der Waals forces, but only takes
into account the short-range part of these forces. Such short-range forces
can be constructed artificially, for example, when the tails of the pair
potentials are ‘‘cut off ’’ at, e.g., radial distance 2.5s as is often done in
Molecular Dynamics simulations of fluids. (34) Our first concern is to check,
within the short-range forces frame-work, the order of the wetting transi-
tion predicted for the n-alkane/methanol mixtures. To this end we make
use of the results derived in ref. 30. However, the notation of that paper
cannot be applied directly, because the definitions of the bulk free energy
densities f differ by a factor 12 between that work and the present one
(which uses the definitions of ref. 26). If we take this into account we find
that tricritical wetting occurs for

o — `12 g/cf0=−2 (4.1)

Critical wetting takes place for o < − 2 and first-order wetting results for
o > − 2 (which includes also g > 0).

For wetting or drying transitions close to Tc we can use the previously
mentioned expression (3.14) for g. If the transition is not very close to Tc

we can use the more general result, (26) which includes a correction of first
order in 1 − T/Tc, and replace g by g+(1 − T/Tc)/2. Likewise, for f0 we
can use (3.5) or the more generally valid value which results from solving
the equation

f0=tanh(Tcf0/T) (4.2)

Using as input the experimentally determined transition temperatures, we
give the results for o, for both methods and for the two lattices concerned,
in Table I.

Experimentally, the hexane/methanol mixture shows a wetting phase
transition, with hexane as the wetting component, at Tw/Tc % 0.92. Since in
this case the alkane-rich phase wets the liquid-vapour interface, methanol
droplets detach from this interface. This can be called a ‘‘drying’’ transi-
tion, if we agree always to refer to methanol as the ‘‘wetting’’ component.
This leads to o > − 2 assuming SC packing and o < − 2 for FCC, so that
the theory, based on short-range forces alone, would locate this transition
not far from the tricritical point, but probably still in the critical drying
regime. For the heptane/methanol mixture the drying transition takes
place at Tw/Tc % 0.985, leading to estimates for o well inside the critical
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Table I. Mean-Field Values for the Reduced Surface Coupling Enhancement o,

Within Cahn–Landau Theory for Short-Range Forces, Based on the Experimentally

Determined Wetting Temperatures for Each Mixturea

mixture SC (app1) SC (app2) FCC (app1) FCC (app2)

n-hexane/methanol − 2.04 − 1.60 − 5.77 − 5.25
n-heptane/methanol − 4.72 − 4.53 − 13.34 − 13.10
n-nonane/methanol − 6.10 − 5.93 − 17.25 − 17.01
n-decane/methanol − 2.75 − 2.43 − 7.79 − 7.40
n-undecane/methanol − 1.82 − 1.33 − 5.16 − 4.58

a SC (Simple Cubic) refers to a packing of molecules with coordination number 6, and FCC
(Face-Centered Cubic) corresponds to dense packing with coordination number 12. App1
corresponds to the approximations (3.5) and (3.14) valid close to Tc, while app2 corresponds
to using the enhancement g+(1 − T/Tc)/2 and (4.2). First-order wetting is predicted for
o >− 2 and critical wetting for o <− 2, the tricritical value being o=−2.

drying range. For octane/methanol no transition was detected. Possibly it
occurs very close to Tc. For these three systems no detailed measurements
were made to study the order of the drying transition.

A clear first-order wetting transition, on the other hand, was observed
for undecane/methanol, with methanol as wetting phase, at Tw/Tc % 0.903.
The resulting o-values satisfy o > − 2 (SC) and o < − 2 (FCC), which
indicates that this transition is not far from the tricritical wetting point
(o=−2) if we neglect the tails of the van der Waals forces. For decane/
methanol Tw/Tc % 0.955, so that all o-estimates are already within the cri-
tical wetting range. This is more pronounced still for the nonane/methanol
mixture, with Tw/Tc=0.992. For this last mixture short-range critical
wetting is observed experimentally. This suggests that the effect of the van
der Waals forces on this transition is quite weak. The scrutiny of this is the
subject of the next section.

On the basis of the results in Table I we can locate approximately the
tricritical wetting point, corresponding to the choice of the SC lattice. For
both approximations (first and second column of Table I) we obtain that
the tricritical condition o=−2 falls between decane and undecane. Decane/
methanol is predicted to show critical wetting and undecane/methanol
to display first-order wetting. More precisely for the first approximation,
valid close to Tc, we obtain Tw/Tc=0.917 for tricriticality. Using linear
interpolation this leads to an effective chain length of 10.72, which can in
principle be achieved by using mixtures. (35) For the second approximation
the tricritical point is at Tw/Tc=0.941 and chain length 10.27. Both of
these estimates from this theory with only short-range forces are in quali-
tative agreement with our recent experiments which indicate a crossover
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from first-order to critical wetting with a tricritical wetting point between
an effective alkane carbon number of 9.6 and 10. (35) Since the results for
both approximations do not differ significantly, in contrast to the results
for different choices of lattices, we will henceforth adopt the simple first
approximation valid close to Tc, unless stated otherwise.

In the remainder of this section we illustrate typical results based on
the short-range-forces theory, and compute the layer thickness, the
adsorption, and the pertinent surface free energies versus temperature, at
fixed bulk field very close to two-phase coexistence. We recall that bulk
coexistence corresponds to the condition h=0. In view of (2.3), (2.4), and
(2.9) this reads (mM − mA)+q(EMM − EAA)/2=0. Since our system is in a
gravitational field and the chemical potential of a particle (as defined in the
absence of the field) depends on its height through a gravitational potential
energy contribution, this equality is only satisfied at one particular height,
which is, of course, the position of the liquid-liquid interface. At a small
elevation Le above this interface, where the liquid-vapour interface is
situated, there is a non-zero bulk field h < 0, favouring alkane molecules.
Since we have put all particles on a lattice with a single lattice constant, the
magnitude of h depends not only on the difference in molecular weight of
M and A molecules, but also on the specific volume per molecule in the
real liquid mixture. In Section 5 we estimate h, give an explicit expression
for it, and show that it is essentially independent of temperature. We can
therefore perform all calculations at fixed h < 0 for all relevant T, below,
at, and above Tc.

We will focus on 3 cases: first-order wetting (o=0, for example),
tricritical wetting (o=−2) and critical wetting (o=−10, for example).
Before embarking on these cases, we discuss some generalities concerning
the order parameter and the free energy.

4.1. The Wetting Layer Thickness

When a sufficient amount of methanol is adsorbed at the alkane/
vapour interface, it is convenient to define a layer thickness l, which corre-
sponds to the region occupied by a methanol-rich film. In our model l is
measured from z=0 down to the position z=l where the concentration
almost equals that of the alkane-rich phase, which is the bulk concentra-
tion. There is some freedom in defining where precisely this bulk phase
starts, and the results are not sensitive to this definition, as long as it
remains reasonable. We choose to define l implicitly so that f(l)=0.9fb,
which is useful even for small adsorbed amounts. For thick wetting films
on the other hand, the simpler definition f(l)=0 would work equally well.
Both types of choices were examined previously when studying alkanes on
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water. (36) Incidentally, note that the choice f(l)=fb is not possible, since it
would result in l=. in view of the exponential decay of the concentration
to its bulk value.

4.2. The Adsorption or Coverage

The arbitrariness in the definition of the layer thickness is avoided
when working with the alternative order parameter, the adsorption or
coverage. This is a measure of the total adsorbed amount per unit area,
obtained by integrating the concentration excess. The adsorption C is thus
defined as

C=F
.

0
dz(f(z) − fb) (4.3)

There is a close connection between the adsorption and the experimentally
measured quantity. In the particular case of binary liquid mixtures that we
study, the experiment makes use of ellipsometry, and the measured ellipti-
city is proportional to the adsorption at the liquid-vapour interface, (37)

provided the wetting layer thickness does not exceed 1000 Å. This condi-
tion is well satisfied in all our experiments. Working with the adsorption is
all the more useful since in the thin-film regime experiments have been
performed with only a small amount of excess material adsorbed at the
interface and in this case a layer thickness is hard to define.

4.3. The Surface Free Energies

If the measurements were performed precisely at two-phase coexis-
tence of the methanol-rich and alkane-rich phases, one could work with the
three interfacial tensions cVA, cVM and cMA, which are defined as follows.
The interfacial tension between methanol and alkane has already been
defined in (3.10), and is an absolute quantity, since no unknown constant
intervenes. The interfacial tension cVA between the vapour and the alkane-
rich phase can be calculated by minimizing (3.7) with the bulk condition
f Q fb < 0, and likewise cVM is obtained using the bulk condition asso-
ciated with the methanol-rich phase, fb > 0. The latter two surface free
energies are relative quantities, which can be seen most easily from the fact
that it follows from the theory that they are zero at the bulk consolute
point, for a spatially constant order parameter f(z)=0. The true interfa-
cial tension for that hypothetical profile is a constant, c0, the value of
which we do not need to know.
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We now define the equilibrium spreading coefficient S,

S=cVA − (cVM+cMA) (4.4)

Partial wetting corresponds to S < 0. In this case Young’s law allows us to
obtain the contact angle h which a methanol-rich droplet makes against the
alkane/vapour interface,

cVA=cVM+cMA cos h (4.5)

Complete wetting corresponds to an equilibrium spreading coefficient
equal to zero, but if we denote by cg

VA the free energy of a stable or meta-
stable surface state with a thin adsorbed film of the methanol-rich phase,
then we can define within mean-field theory a more general spreading
coefficient Sg through

Sg=cg
VA − (cVM+cMA) (4.6)

With this definition, Sg > 0 for the complete wetting regime between the
wetting transition and the upper spinodal point. Sg ceases to be defined for
temperatures above this spinodal, as cg

VA is no longer defined.
A first-order wetting transition is then characterized by a simple zero-

crossing of Sg. Critical wetting is more subtle, because in this case there is
no metastable extension of the thin film. S approaches zero from below,
with vanishing slope, without crossing zero. In this case, a generalization
Sg different from S does not exist.

Due to gravitational effects the methanol-rich phase is slightly off of
coexistence, while the alkane-rich phase is stable in bulk, at the elevation at
which the alkane/vapour interface and the methanol wetting layer reside.
Typically, this elevation is 5 mm above the methanol/alkane interface. In
practice, while we can calculate under these circumstances the quantity cVA,
we must have recourse to approximations for computing the other two
surface free energies. We will address this interesting problem for the cases
of first-order and critical wetting separately.

Case 1. First-Order Wetting

When the wetting transition is of first order, we can, for our present
purpose of illustrating the method, restrict our attention to zero surface
coupling enhancement, g=0. Then the surface field h1 which induces the
transition is given by the relation (30)

h1=0.681 cf2
0, w/`12 , (4.7)
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where f0, w denotes the value of f0 and therefore the temperature at which
the wetting transition takes place. We take f0, w=0.2 so that Tw/Tc=0.987.
The factor `12 is present because our units are different from those of
ref. 30. Of special interest for us is also the upper spinodal, corresponding
to the metastability limit of the thin film upon increasing the temperature
towards Tc. This point is located at

f2
0, sp=`12 h1/c, (4.8)

where h1 is the surface field defined in (4.7) and f0, sp determines the spino-
dal temperature. In the experiments the wetting layers occur at a height
where the wetting phase is slightly undersaturated, corresponding to
h % − 10−6 (see Section 5). Here we take a somewhat larger undersatura-
tion, h=−10−5, for greater clarity of presentation. We will encounter the
prewetting transition and the upper prewetting spinodal at slightly higher
temperatures than the wetting transition and associated spinodal at bulk
coexistence. As was mentioned already, the undersaturation (in methanol)
is a consequence of the gravitational contribution to the chemical potential.
The main effect of this is that the wetting layer cannot reach macroscopic
thickness. For a more detailed study of first-order wetting transitions under
gravity, we refer to reference. (38) On the other hand the lower prewetting
spinodal, which is the metastability limit of the thick film upon decreasing
the temperature, typically lies at a temperature far below that of the
equilibrium phase transition. (39)

The phase portrait follows from the first integral or ‘‘constant of the
motion’’ derived from the Euler–Lagrange equation (30)

c2

2
d2f

dz2=
df
df

(4.9)

This conservation law reads, with ḟ — df/dz,

ḟ= ± 2 `f(f) /c (4.10)

While we will work with the SC microscopic lattice model in the applica-
tions to the experiments (Section 5), in this methodological section we
work, for a change, with the FCC lattice. We therefore have c2/2=Kc=
1/12 in MF theory, implying c=1/`6. With this choice the value of h1 is
fixed by (4.7) and equals 0.00321. The bulk condition reads

f(z) Q fb, for z Q . (4.11)
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which corresponds to the alkane-rich phase. The boundary condition at the
liquid-vapour interface (30) reads

ḟ|z=0=−2h1/c2 (4.12)

Figure 1 shows the thickness l of the thin film and the thick film as a
function of temperature, for fixed h1 and g=0. The calculations have been
performed for temperatures below as well as above the consolute tempera-
ture Tc. For T > Tc there is no wetting layer, since the bulk phases are fully
mixed into a single phase. However, the preferential adsorption of metha-
nol at the liquid/vapour interface remains visible as a methanol-enriched
transition zone, which close to Tc is called critical adsorption.

We distinguish the thin film and the wetting layer, which, strictly
speaking, is a prewetting layer. The wetting transition (more precisely,
prewetting transition), where the film and the layer exchange stability, is
indicated by the vertical dashed line. The thin film is stable at low temper-
ature, becomes metastable above the wetting point and remains metastable
up till the spinodal temperature (open circle). The wetting layer is meta-
stable below the wetting point and stable above it. When the temperature
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Fig. 1. Layer thickness versus temperature for the case of a first-order (pre-)wetting transi-
tion at Tw/Tc=0.987 (dashed line) in the model with short-range forces. The spinodal point
(SP) marks the metastability limit of the thin film. The wetting layer thickness displays a sharp
maximum at the bulk consolute point, T=Tc.
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crosses Tc the wetting layer state gradually changes to a state in which a
methanol-rich layer sits on a single (fully mixed) bulk phase.

Close to the critical point there is a marked increase in the layer
thickness, below as well as above Tc. This is related to the well-documented
phenomenon of critical adsorption, (40) which entails a slow (algebraic)
decay of the concentration profile into the bulk phase in place of the usual
exponential decay, in this theory, governed by the length scale set by the
bulk correlation length t. The divergence of t at Tc leads to a diverging
layer thickness, as we have defined it. Since this effect is sensitive to the
definition of the layer thickness, it is preferable to study the adsorption C,
to which we now turn.

Figure 2 shows how the adsorption C varies with temperature, for the
case of first-order wetting. The vertical line denotes the wetting transition
as in Fig. 1. In contrast with the layer thickness, the adsorption gives a
unique and reliable estimate of the concentration excess near the liquid/
vapour interface. In the thin-film state the adsorption follows closely the
layer thickness variation. However, in the wetting layer the adsorption
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Fig. 2. Adsorption versus temperature for the case of a first-order (pre-)wetting transition
(dashed line) in the model with short-range forces. The spinodal point (SP) marks the metas-
tability limit of the thin film. The phenomenon of critical adsorption is clearly visible when the
temperature is lowered from near-critical values above Tc, through Tc.
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behaves qualitatively differently from l. Well below Tc the adsorption
depends on the undersaturation, described by the bulk field h. If h is
decreased to zero, the wetting layer becomes macroscopically thick and the
adsorption diverges. In mean-field theory this divergence is logarithmic in
1/|h|, as our computations confirm. On the other hand, close to and at Tc

the adsorption varies rapidly as a function of temperature (at fixed under-
saturation), as Fig. 2 shows. The value of C at Tc, as a function of h, is
described by the scaling laws of critical adsorption. (40) In mean-field theory
there is (again) a logarithmic divergence in 1/|h|, while for real fluids the
divergence is of the power-law form

C 3 |h| (b − n)/D (4.13)

where b % 0.33 and n % 0.63 are the bulk order-parameter and correlation-
length exponents, respectively, and D % 1.56 is the bulk gap exponent which
appears when temperature-like exponents are converted to field-like ones.
In mean-field theory b=n=1/2 and D=1.5.

The combined result of the increased adsorption at Tc and the presence
of the wetting layer below Tc is what is seen in Fig. 2. We would like to
stress that the monotonic behaviour of C(T) displayed here is not the only
possible one. Depending on the undersaturation, which opposes wetting,
and the precise magnitude of the surface field favouring wetting, non-
monotonic adsorption and critical depletion phenomena can also occur, (41)

when the temperature approaches Tc from above.
Turning now to the surface free energy, Fig. 3 shows this quantity for

the thin film and for the wetting layer. The first-order character of the
wetting transition is clearly seen from the crossing of the free energy
branches, and the upper spinodal is also indicated. Due to the slight
undersaturation a spreading coefficient cannot be defined rigorously, but
for small |h| a very good approximation to Sg defined in (4.6) is given by

Sg % cthin − cthick (4.14)

Clearly, Sg < 0 for the thin film, and Sg > 0 for the wetting layer. In reality,
Sg is slightly larger than this approximation by an amount of the order of
− h(lthick − lthin), where l is the layer thickness. For small h, as for our
calculations, this correction is unimportant.

Case 2. Tricritical Wetting

The tricritical wetting transition takes place for the following special
values of the surface coupling enhancement g and surface field h1, (30)
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Fig. 3. The excess surface free energy per unit area relative to some unknown common con-
stant, for the thin film and the wetting layer. The crossing point of the curves indicates the
discontinuous (first-order) (pre-)wetting transition for the model with short-range forces.

g=−2 cf0, w/`12 , (4.15)

h1=−gf0, w (4.16)

Again we fix the wetting transition at f0, w=0.2 so that Tw/Tc=0.987 and
we use the same lattice parameters (FCC) as in the previous case. The
computation of the layer thickness l is straightforward and for a bulk field
h=−10−6, in the experimentally relevant range, the result is shown in
Fig. 4 (curve ‘‘tcw’’). The most remarkable feature of this figure is the
weakness of the layer thickness increase in the vicinity of the wetting tran-
sition, at T/Tc % 0.987. In order to see a stronger increase of l, the bulk
field must be made smaller in magnitude than the 10−6 we have chosen.
However, a smaller value of |h| will also lead to a larger value of l at Tc,
associated with the diverging bulk correlation length at bulk criticality.
With our choice of h we have attempted to visualize the two effects using
the same scale of l. The value of l at Tc is lc=106.3.

For comparison with experimentally measured quantities, it is more
appropriate to study the adsorption C. The result of the calculation for the
same field h=−10−6 is shown in Fig. 5 (curve ‘‘tcw’’). Now the tricritical
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Fig. 4. Layer thickness versus temperature, slightly off of bulk coexistence, in the vicinity of
a tricritical wetting transition (tcw) and a critical wetting transition (cw) in the model with
short-range forces, occurring at Tw/Tc=0.987. The (pre-)wetting layer thickness displays a
sharp maximum at the bulk consolute point, T=Tc. Note how weak the wetting signal is
compared to the peak at bulk criticality, with this choice of order parameter l.

wetting transition at Tw/Tc % 0.987 is clearly detectable as well as the criti-
cal adsorption phenomenon for T/Tc approaching 1. This is how, in the
theory dealing with short-range forces alone, both phenomena manifest
themselves when the adsorbate is slightly off of two-phase coexistence in
bulk (by fixing h). Comparing this with the adsorption calculated for a first-
order wetting transition (and somewhat larger bulk field magnitude),
shown in Fig. 2, we can easily distinguish the continuous and reversible
adsorption at tricritical wetting from the discontinuous and hysteretic
behaviour of C at first-order wetting.

In the experiments it is possible to measure contact angles, and there-
fore the spreading coefficient, in spite of the slight undersaturation of the
wetting phase at the liquid-vapour interface. It would thus be very welcome
to be able to calculate h or S for states slightly off of two-phase coexis-
tence, although these quantities are, strictly speaking, not well defined
under these circumstances. For the case of a first-order wetting transition
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Fig. 5. Adsorption versus temperature, slightly away from bulk two-phase coexistence, in
the vicinity of a tricritical (tcw) and critical (cw) wetting transition in the model with short-
range forces. The wetting signals at Tw/Tc % 0.987 are comparable in strength to the critical
adsorption phenomena at T=Tc. Note how steep is the wetting singularity for the case of
tricritical wetting.

we could circumvent this problem by taking advantage of the existence of
two states, the thin film and the wetting layer, so that S could be approx-
imated as in (4.14). In the vicinity of continuous wetting transitions,
however, there is only one film state, and we must have recourse to a new,
more general method. In the following we develop an approximation,
which allows us to calculate S for situations in which the wetting phase is
metastable, but sufficiently long-lived.

For states off of coexistence, only one of the three surface tensions
that feature in the spreading coefficient is well defined. In our system this
is cVA, since the alkane-rich phase is stable in bulk at the height of the
liquid-vapour interface, while the methanol-rich phase is metastable. We
denote this metastable phase by Mg. In Fig. 6 we have sketched the con-
figuration of a metastable droplet of methanol attached to the alkane-
vapour interface, for which we would like to calculate S and hence obtain
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Fig. 6. The configuration of our system with vapour (V), alkane-rich (A) and methanol-rich
phases (M), showing the metastable droplet of the methanol-rich phase, Mg, attached to the
alkane-vapour interface at height z=0. Not shown is the (microscopic) thin film of M at the
A-V interface. Bulk two-phase coexistence is achieved at the A-M interface, but not at the
A-V interface, where slight gravitational undersaturation of the A phase in the M component
takes place. The bulk concentration at z=0 is indicated by fb and differs slightly from the
coexistence value − f0.

the contact angle from the Young equation. We begin by formally defining
the following approximation to S,

S % cVA − (cVMg+cMgA) (4.17)

Our task is now to give meaning to and to calculate the last two terms.
In spite of its thermodynamic metastability the attached droplet is in

mechanical equilibrium, and it takes a long time (typically weeks) before
the droplet disappears, through diffusion, and its content eventually joins
the methanol-rich phase at the bottom. Clearly, all three interfacial ten-
sions are measurable and should therefore be calculable, in principle. Their
calculation is most easily explained by examining the phase portrait (27, 36)

shown in Fig. 7. The solid lines with arrows give the trajectories, which
start at points that obey the boundary condition

ḟ|z=0=−2(h1+gf1)/c2 (4.18)

and which end at the bulk fixed point, at fb, or at the metastable bulk fixed
point at fg. The trajectory from f1 to fb is the one that minimizes cVA.

We propose to define cVMg as the excess surface free energy relative to
the metastable bulk phase Mg. This excess quantity is defined using the
modified functional

cg[f]=F
.

0
dz 3c2

4
1df

dz
22

+fg(f(z))4− h1f1 − g
f2

1

2
, (4.19)
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Fig. 7. Phase portrait construction allowing, approximately, to calculate the interfacial
tension between the vapour V and metastable Mg phases, and between the latter and the
stable A phase. The thick straight line represents the boundary condition. The dashed lines
mark the surface values of f at the V-A or V-Mg interfaces. The thick curves give the trajec-
tories of these two interfaces. The dotted line and the accompanying arrow indicate, respec-
tively, the jump in the derivative of f at the Mg-A interface, and the starting point of the
trajectory which, from this interface, eventually leads to the bulk A phase. For this figure the
value h=−0.0001 was used for the bulk field.

where fg(f) is the bulk free energy density relative to the metastable state,

fg(f)=−h(f − fg) − (1 − T/Tc)(f2 − fg2)/2+(f4 − fg4)/12 (4.20)

Minimization of this functional gives the trajectory which runs from fg
1

to fg.
Finally, we define the interfacial tension between the metastable and

stable bulk phases Mg and A as follows. Since the alkane-rich phase is
stable in bulk, it is obvious that we must define cMgA as the excess free
energy relative to the stable phase, and therefore use f(f) defined in (3.6).
Furthermore, the trajectory must start at fg and end at fb. The optimal
concentration profile, which minimizes the surface free energy, does not
start with zero derivative, but with a finite value of ḟ (see dotted line in
Fig. 7). This small jump in derivative is caused by the slight undersatura-
tion of the metastable phase, and vanishes for h Q 0. In that limit cMgA

approaches cMA given by (3.10).
The approximation scheme we adopt neglects the excess free energy in

bulk of Mg relative to A in calculating cVMg, since we use fg in place of f.
This contribution is to be multiplied with the thickness, along z, of the
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region occupied by the Mg phase, in order to obtain the excess surface free
energy. Hence, our approach, which is an approximation assuming small
undersaturation, should be more accurate for small droplets than for large
ones. Note that for small undersaturation droplets of a wide range of sizes
can be observed as being metastable.

The result of the approximation is shown in Fig. 8. The two surface
free energy curves approach one another almost tangentially, at T/Tc %

0.987. At this point the curves actually cross. However, this cannot be seen
on the scale of the figure. The curves appear coincident for T/Tc > 0.987.
For example, at T/Tc=0.99 the difference in reduced surface free energy is
only about 2 × 10−6. The crossing of the curves is due to the fact that the
system is slightly off of coexistence. In the limit h Q 0 the curves meet tan-
gentially at the tricritical wetting point, and the curve associated with cVA

stops there. This is in contrast with Fig. 3, where the thin-film state
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Fig. 8. Dimensionless surface free energy versus temperature for a system with short-range
forces in the vicinity of a tricritical wetting transition. The lower curve is for the V-A interface
and the upper one is for the combination of the V-metastable M and metastable M-A interfa-
ces, computed with the new approximation scheme. Due to the presence of a very small but
nonzero bulk field h the curves approach each other tangentially and actually cross at the
approximate tricritical wetting point at Tw/Tc % 0.987. On the scale of the figure the curves
appear to merge.
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continues to exist as a metastable state up till the spinodal point. In fact,
tricriticality is achieved when the spinodal coincides with the wetting tran-
sition itself. The difference of the two curves of Fig. 8 gives the spreading
coefficient, which will be discussed together with that for critical wetting.

Case 3. Critical Wetting

The critical wetting transition takes place under the following restric-
tions of the surface coupling enhancement g and surface field h1, (30)

g < − 2 cf0, w/`12 , (4.21)

h1=−gf0, w (4.22)

In this range we choose g=−10 cf0, w/`12, and the wetting temperature,
bulk field and lattice parameter are chosen the same as for the previous
case of tricritical wetting. The result for the layer thickness l is shown in
Fig. 4 (curve ‘‘cw’’). As in the previous case, the increase of l in the vicinity
of the critical wetting transition at Tw/Tc % 0.987 is quite weak compared
with the critical adsorption peak at Tc. The value of l at Tc equals
lc=107.3. Further, the critical wetting transition presents a weaker signal
than the tricritical wetting transition.

The comparison between tricritical and critical wetting can be made
most clearly in Fig. 5, which shows the adsorption. The behaviour at criti-
cal wetting is continuous, while the tricritical transition is almost discon-
tinuous, which is to be expected in view of the fact that tricriticality marks
the onset of the regime of first-order (discontinuous) transitions.

The calculation of the surface free energy proceeds along the approx-
imation scheme outlined in the previous section, and the result is shown in
Fig. 9. As in the case of tricritical wetting, the two curves approach each
other almost tangentially at the wetting point. The difference of the two
curves determines the spreading coefficient S, which is shown in Fig. 10 for
the three cases: critical wetting (cw), tricritical wetting (tcw), and first-order
wetting (fow). For this comparison, the same bulk field, h=−10−6, was
imposed. As expected, S crosses zero linearly for first-order wetting,
while S approaches zero with vanishing slope for the continuous wetting
transitions.

The singular behaviour of S at wetting is described by the power law,
for T approaching Tw from below,

S=S0(Tw − T)2 − as (4.23)

where as is the surface specific heat exponent. At bulk two-phase coexis-
tence (h=0) the Cahn–Landau theory produces the mean-field results for
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Fig. 9. Dimensionless surface free energy versus temperature for a system with short-range
forces in the vicinity of a critical wetting transition. The lower curve is for the V-A interface
and the upper one is for the combination of the V-metastable M and metastable M-A interfa-
ces, computed with the new approximation scheme. Due to the presence of a very small but
nonzero bulk field h the curves approach each other tangentially and actually cross at the
approximate critical wetting point at Tw/Tc % 0.987. On the scale of the figure the curves
appear to merge.

short-range forces, as=1 (fow), as=1/2 (tcw), and as=0 (cw). Since our
spreading coefficients are extensions of S away from two-phase coexistence,
a condition relevant to the experimental situation, it is instructive to check
whether these asymptotic exponents already show up sufficiently clearly. For
‘‘fow’’ there is a zero-crossing, so that S is linear about Tw, implying as=1.
For ‘‘tcw’’ fits to the calculated curve give as=0.40 ± 0.10 and for ‘‘cw’’ we
find as=0.02 ± 0.04, where the error bars reflect how much the results typi-
cally vary when various temperature ranges of input data are used. In
conclusion, the tricritical and critical wetting transitions at h=0 are already
well approximated by the behaviour of S slightly off of coexistence. This is
valid for systems with short-range forces. In order to compare the theory
with experiments on real fluids, however, it is indispensable to include the
long-range forces in the description, which is the task to which we now turn.
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Fig. 10. Dimensionless spreading coefficients S for first-order wetting (fow), tricritical
wetting (tcw) and critical wetting (cw), for systems slightly removed from bulk coexistence by
a small bulk field h=−10−6 and for short-range forces. For first-order wetting S clearly
displays a zero-crossing at the transition, implying 2 − as=1. For the continuous transitions S
vanishes with vanishing slope, to a very good approximation, so that as < 1. For tricritical
wetting as % 1/2 and for critical wetting as % 0. Precise values are given in the text.

5. CROSSOVER FROM FIRST-ORDER TO CRITICAL WETTING:

LONG-RANGE FORCES

In this section we include the long-range tails of the van der Waals
interactions between molecules in the Cahn–Landau description. In doing
so we follow ref. 36 and limit ourselves to allowing for a long-range
substrate-adsorbate field h(z) which takes into account the net effect of the
substrate-adsorbate adhesive and adsorbate-adsorbate cohesive contribu-
tions which influence the thickness of the wetting film. The extended Cahn–
Landau free-energy functional reads

c[f]=F
.

0
dz 3c2

4
1df

dz
22

+f(f(z))4− F
.

zg
dz h(z) f(z) − h1f1 − g

f2
1

2
(5.1)
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For non-retarded van der Waals forces, relevant to wetting film thicknesses
not exceeding a few hundred Å, the decay of h(z) is algebraic and of the
form

h(z)=a3/z3+O(1/z4) (5.2)

Since in our type of system the long-range interactions favour wetting by
the methanol-rich phase, (42) we have a3 > 0, which is referred to as ‘‘ago-
nistic’’ long-range forces (LRF). (4) The leading amplitude a3, to which we
will henceforth refer as LRF amplitude can be related to the Hamaker
constant, which is proportional to the leading term in the long-range
interaction free energy per unit area between the interfaces that bound the
wetting layer. This free energy or interface potential V(l), for large wetting
layer thickness l, is given by

V(l) − V(.) % 2f0 F
.

l
dz h(z) (5.3)

Clearly this potential implies a repulsive force for a3 > 0. This force per
unit area, or disjoining pressure between the two interfaces, is

P(l) — − dV(l)/dl % 2f0a3/l3 (5.4)

In the model we will neglect all higher-order contributions to h(z).
This is meaningful when a3 has no significant temperature dependence, but
would not be sufficient for systems in which the Hamaker constant changes
sign, necessitating the inclusion of at least two terms in h(z) for describing
long-range critical wetting. (36, 13)

The long-range field is ‘‘switched on’’ starting at a cut-off distance zg.
Previous work has devoted special attention to the possibility of optimizing
this parameter, (36) but we will adopt the simplest possible criterion and fix
zg to 2.5s, which is the standard cut-off used in many works.

The basic characteristic of our approach is to take the LRF amplitude
a3 to be an adjustable parameter, since we ignore all higher-order terms. If
we would consider keeping the full h(z) we could determine a3 by matching
it to the Hamaker constant determined on the basis of experimental data.
In spite of the existence of a theoretical framework for calculating a3 and
higher-order terms, (24, 12, 43) we do not embark on this here in view of the
sensitivity of these terms to small changes in molecular parameters and
other microscopic quantities. In particular, the amplitude a4, i.e., the coef-
ficient of z−4 in (5.2), depends on the details of the spatial variation of the
particle density profiles in the liquid-vapour interface. Therefore, our LRF
amplitude a3 is taken to be an effective constant, whose magnitude is
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unknown, but we assume that its sign is consistent with that of the
Hamaker constant in order to capture at least qualitatively the correct
asymptotics for large z. Since a quantitative determination of h(z) is
beyond our scope, our approach is most meaningful in the sense of a per-
turbative one, in which the LRF are treated as a weak contribution. Our
purpose will thus be to test the influence of weak agonistic LRF on critical
wetting and the cross-over to first-order wetting, in systems which are
slightly away from bulk coexistence.

In order to get a feeling for ‘‘weak LRF’’ and the associated order of
magnitude of a3, it is necessary to check the value of a3 which follows from
the Hamaker constant pertaining to the experiments. Calculation of this
quantity is performed using the dielectric constants and refractive indices
for all phases involved. (28, 44) For the nonane/methanol system, for example,
this leads to the function

P̃(L) % A(T)/L3=a(T) kBTc/(l3s3)=P(l) kBTc/s3, (5.5)

where A(T) is an energy, and L is the wetting layer thickness in Å. Since A
is proportional to the (bulk coexistence) order parameter f0, it approaches
zero for T Q Tc. At Tw/Tc=0.992, with Tc=352 K, the value A(Tw)/kB %

3.5 K is obtained, so that a(Tw) % 0.010. In order to extract a3 we need to
calculate also f0. This can be done using (4.2) at Tw which leads to
f0=0.164. We thus obtain a3=a/2f0 % 0.030. We remark that a3 can be
considered to be a constant, independent of T. In the following the LRF
amplitudes for our calculations will be denoted by ‘‘weak’’ provided they
are small compared to this estimate.

The remainder of this section is structured as follows. For the three
different mixtures we estimate the bulk and surface fields, the surface
coupling enhancement and calculate the adsorption as a function of
temperature. We interpret the results on the basis of the knowledge of the
properties of the short-range theory (especially the order and location in
temperature of the wetting transition) and the effect of adding weak long-
range forces. We also compute the specific heat exponent when appropri-
ate. Adsorption curves and critical exponents are compared with the
experimental results.

5.1. Nonane/Methanol

The bulk field for this system, which reflects the difference between the
gravitational potential energy at the liquid-vapour interface and that at the
liquid-liquid interface can be obtained as follows. Equating the free-energy-
density difference between the two bulk phases, due to the presence of
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a small bulk field, to the gravitational potential energy difference per unit
volume we obtain the relation

2hf0kBTc/s3=−Drmass gmLe, (5.6)

where gm is the gravitational acceleration and Le the vertical distance
between the two interfaces, which is roughly 0.5 cm in the experiments. The
mass density rmass in a given phase involves the molecular weights m of the
pure components and the number densities r in the manner

rmass=mMrM+mArA, (5.7)

where mM=32.04 amu and for nonane mA=128.25 amu (1 amu=1.66
× 10−24g). The mass density difference Drmass, defined as the mass density of
the methanol-rich phase minus that of the alkane-rich phase, is positive.

Our first concern is to obtain a reliable order-of-magnitude estimate
of h, based on experimental data. The measured mass density difference at
Tw is Drmass=0.0216 g/cm3. We obtained this using the same method and
apparatus as was used by Chaar et al. (31) Taking this value together with
f0=0.164, calculated using (4.2), and invoking the average diameter
s=4.83 Å we find h=−0.873 × 10−6. Note that this is of the same order of
magnitude as the bulk field assumed in our examples in the short-range
theory in the previous section. An error of 10% in our estimate of s would
modify h by about 30%. Also recall that h < 0, as it should be in order to
stabilize the alkane-rich bulk phase at the height of the liquid-vapour
interface.

In our lattice-gas approximation the mass density difference Drmass can
be related to the concentration difference DxM of one of the components,
using the crude approximation (3.11) according to which the total number
density is constant, and we obtain

Drmass % (mM − mA) DxM/s3, (5.8)

where DxM > 0 is the concentration of methanol in the methanol-rich phase
minus that in the alkane-rich phase.

This relation relies heavily on the approximation that a single lattice
constant can be employed in the model, and should therefore not be
expected to be accurate. In fact, it ignores the fact that the heavier alkane
molecule occupies in reality a much bigger volume than the lighter metha-
nol molecule, and therefore gets the sign of Drmass wrong. However, let us
not abandon this line of reasoning yet. Since the bulk order parameter is
given by

f0=DxM (5.9)
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we can now simplify considerably the expression for the bulk field and
obtain

h % − gmLe(mM − mA)/2kBTc (5.10)

The result is h % 0.806 × 10−6. Note that this approximation, which would
be fine if the molecules were of nearly the same size, accidentally reprodu-
ces the correct order of magnitude of |h|. Besides this fortuitous point, the
merit of this simple ‘‘molecular mass’’-type of approximation is that it
clearly shows that h is independent of temperature, to the extent that the
height difference Le between the interfaces is constant.

In order to correct qualitatively for the error made by using a single
effective diameter for the two molecules in the lattice gas model, we can
work with molecular mass densities instead of molecular masses as follows.
Instead of mM and mA we employ effective masses which reproduce the
correct molecular mass densities when put in the volume s3 of a unit cell in
the lattice. This amounts to the approximation

h % − gmLe(mM/s3
M − mA/s3

A) s3/2kBTc, (5.11)

and leads to the estimate h=−0.59 × 10−7. Now the sign is correct but the
order of magnitude is less satisfactory. Since we work with alkanes similar
to nonane in what follows, and we would like to exploit the knowledge of
the magnitude of h as determined from experimental input, we will adopt
the admittedly heuristic approximation which consists of using simply
(5.10) but with the correct sign,

h % − gmLe |mM − mA |/2kBTc (5.12)

No qualitative changes are to be expected when using, for example, (5.11)
instead.

The surface field h1 is derived using (2.4) and (2.11). Since the bulk
field contribution in (2.11) is negligible the surface field is determined by
the difference of the pure component potential parameters and we readily
obtain the estimate h1=0.0206.

For estimating the surface coupling enhancement g, we follow the
procedure outlined at the end of Section 3 for determining Kc and then use
(3.14). Using the experimental values for the liquid-liquid interfacial
tension and the arithmetic mean s=4.83 Å we found Kc=0.173 and
Kc=0.171. Since these are close to 1/6 we assume henceforth the simple
cubic lattice for describing this mixture by a lattice model. This leads to the
surface coupling enhancement g=−Kc=−1/6.
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In order to test the sensitivity of s with respect to alternative ways of
defining it, we can use experimental data at the consolute point, (31) such as
mass density 0.689 g/cm3, concentration xA=0.29, partial mass density
mArA=0.62rmass, and use (3.11) with the result s=5.25 Å. This is some-
what larger than the average value we have chosen to work with, but still
well in between the pure component s values.

In the short-range-forces theory the wetting tricritical point for this
system with g=−1/6 lies at f0=0.5 according to (4.1), and h1=0.083 in
view of (4.16). Since the actual surface field h1=0.0206 is smaller the
wetting transition is critical. This is confirmed by calculating the adsorp-
tion in the short-range forces limit, which leads to a curve very similar to
that for cw in Fig. 5. The short-range critical wetting transition takes place
at f0, w=−h1/g=0.124, which corresponds to Tw/Tc=0.995, quite close to
the experimental value of 0.992. From (4.1) we obtain o=−8.06. This
value is somewhat lower than the value − 6 that is given in Table I for
n-nonane/methanol (SC lattice). The reason for this difference is that in
the present section the short-range critical wetting temperature is calculated
self-consistently, whereas in the calculation underlying Table I the
experimental wetting temperatures are used as input.

The influence of weak agonistic long-range forces on this system can
be tested by assuming a LRF amplitude a3=0.003, ten times smaller than
the reference value we calculated in the first part of this section. The pre-
diction from all previous theoretical works is that the short-range critical
wetting transition must become a first-order wetting transition (see, e.g.,
refs. 4, 6, and 7). However, the calculation, represented by the adsorption
curve in Fig. 11, clearly reveals a continuous transition, in every respect
reminiscent of the critical wetting phenomenon (cw) apparent in Fig. 5.
Moreover, the experimentally observed adsorption curve, through ellipti-
city measurements, is shown in Fig. 12 and is similar to this theoretical
one.

The solution to this paradox lies entirely in the fact that the system is
not at bulk two-phase coexistence. At coexistence the wetting transition is
definitely of first order, by virtue of the interface potential barrier between
the macroscopic (‘‘infinitely’’ thick) wetting layer and the thin film. How-
ever, off of coexistence the system does not display first-order wetting
but features a prewetting line, which is very short in temperature as well as
in bulk field, for very weak long-range forces. Under those circumstances
the bulk field due to the gravitational effect is large enough to make the
system sneak underneath the prewetting critical point, and show a contin-
uous transition instead of a (weakly) first-order one. We will clarify this
scenario in more detail for the system decane/methanol in the next subsec-
tion. Since the LRF favour wetting the wetting temperature is slightly
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Fig. 11. Adsorption of the methanol-rich phase versus temperature for the model system
representing the nonane/methanol binary liquid mixture at the liquid-vapour interface. The
model parameters bulk field, surface field and surface coupling enhancement are given in the
text. The amplitude of the long-range forces favouring wetting has been chosen to be very
small, treating these forces as a weak perturbation. Note the continuous wetting signal at
Tw/Tc % 0.994 and the critical adsorption approaching Tc from above.

lowered to Tw/Tc=0.994 with respect to the short-range forces limit.
Experimentally, Tw/Tc=0.992 for this system.

We stress that, since we have assumed an arbitrary small a3, we cannot
hope to obtain quantitative agreement with the experiments. Instead, what
we have demonstrated is that slightly away from bulk coexistence short-
range critical wetting can preserve all its qualitative features when weak
long-range forces favouring wetting are included. If we increase a3 the first-
order character of the wetting transition at bulk coexistence becomes
stronger, resulting in a longer prewetting line off of coexistence. We then
find a first-order prewetting transition instead of a continuous one.

In closing this subsection we calculate the exponent as associated with
the spreading coefficient for the continuous prewetting transition, following
the new approximation for off-of coexistence systems developed in Section 4,
Cases 2 and 3 (continuous wetting transitions). The result is as=
0.18 ± 0.1, which is in fair agreement with the value 0 expected for short-range
critical wetting, and in reasonable agreement with the experimentally
determined value − 0.22 ± 0.27.
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Fig. 12. Experimentally measured ellipticity versus temperature, which is proportional to the
adsorption, for the nonane/methanol mixture. The signal is qualitatively the same as in the
theoretical Fig. 11. The small dip in the data between wetting and critical adsorption is within
the range of the experimental noise.

5.2. Decane/Methanol

For an alkane chain length of 10 the bulk and surface field values are
changed slightly with respect to the foregoing case. Using the approxima-
tion (5.12) only the molecular weight of the alkane (for decane mA=142.28
amu) and the upper consolute temperature (for decane/M, Tc=364 K)
undergo small changes, leading to the estimate h=−0.893 × 10−6 for
decane/methanol. The surface field depends on the difference between
EAA/kB=464 K and ES

MM/kB=417 K, where the superscript S refers to the
Stockmayer potential, and we obtain h1=0.0323.

Concerning the surface coupling enhancement, we first estimate the Kc

value from experimental data for the decane/methanol interfacial tension
at ambient temperature. Kahlweit et al. (32) provided the measured value
1.93 × 10−3 N/m, while Carrillo et al. (31) obtained about 1.71 × 10−3 N/m.
Taking as representative diameter the arithmetic mean of sM=3.65 Å and
sA=6.22 Å based on the van der Waals equation of state with
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TLG
c =617 K and PLG

c =21.1 × 105 Pa for decane, we get s % 4.94 Å. This
leads to the two estimates for the dimensionless interfacial tension:
cMA=0.0938 and 0.0831, respectively. Using (3.10) we obtain c=0.607 and
0.538, respectively, and hence Kc=0.184 and 0.145. Since the average of
these two estimates is only 1% away from 1/6, it is appropriate to assume
also for this system the simple cubic lattice in the MF model description.
We conclude g=−1/6 as for nonane/methanol.

As for the previous mixture, in the short-range-forces theory the
wetting tricritical point for g=−1/6 lies at f0=0.5 according to (4.1), and
h1=0.083 in view of (4.16). Since the surface field h1=0.0323 is smaller
than this tricritical value, the predicted short-range wetting transition is
critical. It takes place at f0, w=−h1/g=0.194, which corresponds to
Tw/Tc=0.988. This is larger than the experimentally determined transition
temperature Tw/Tc=0.955, but we have to keep in mind that agonistic
LRF will lower the wetting temperature. From (4.1) we obtain o=−5.15,
which is still well within the critical wetting regime but closer to triciticality
than the previous mixture. For comparison, we recall that the value of o

predicted by the SRF theory when the experimental wetting temperature is
used as input is also in the critical wetting regime but much closer to the
tricritical value − 2. Table I (for decane and the SC lattice) illustrates this.

The addition of weak long-range forces, for which, for simplicity, we
assume the same strength a3=0.003, drives the transition very weakly first-
order in this theory, as is demonstrated by the remarkable adsorption
plot in Fig. 13. The wetting temperature is only slightly lowered to
Tw/Tc=0.985, which is not enough to obtain good agreement with the
experimental results. Again, we can at best hope to get qualitative agree-
ment using the LRF as a weak perturbation only. The similarity of the
adsorption curve of Fig. 13 and the typical vertical tricritical wetting
adsorption signal (Fig. 5, curve tcw) is striking. There is hardly a way to
distinguish the tricritical adsorption jump from a genuine weak first-order
jump of the order parameter. The hysteresis is so minute that the lower and
upper spinodal points SPl and SPu practically coincide in temperature.

The physics contained in Fig. 13 can be understood in detail by unra-
veling the wetting phase diagram associated with these SRF and LRF
parameters for decane/methanol. This is done in Fig. 14, which shows a
clear first-order wetting transition at bulk coexistence, with a first-order
prewetting line emerging from it. The lower and upper spinodal lines merge
with this prewetting line at the prewetting critical point. For bulk fields
larger in magnitude than the value associated with this point, the transition
is ‘‘supercritical’’ and has the appearance of critical wetting as is the case in
Fig. 11 (nonane/methanol). For smaller fields in magnitude the transition
is first-order. In the immediate vicinity of the prewetting critical point,
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Fig. 13. Adsorption of the methanol-rich phase versus temperature for the model system
representing the decane/methanol binary liquid mixture at the liquid-vapour interface. The
model parameters bulk field, surface field and surface coupling enhancement are given in the
text. The amplitude of the long-range forces favouring wetting has been chosen to be very
small, treating these forces as a weak perturbation. Note the very steep and almost continuous
wetting signal at Tw/Tc % 0.986 and the critical adsorption near Tc. The (pre-)wetting transi-
tion is of first-order, but very weakly so. The lower and upper spinodal points are also indi-
cated, together with the small jump (dashed line) of the equilibrium order parameter. The
system is very close to the prewetting critical point.

relevant to decane/methanol in our approximation of weak LRF, the
transition appears tricritical. The adsorption curve of Fig. 13 corresponds
to the temperature scan along the dashed line in Fig. 14. The approximate
locations of the wetting transition and of the prewetting critical point are
indicated by open squares.

It is interesting to examine how the prewetting line meets the bulk
coexistence line h=0. The two lines meet tangentially (45) in a manner
governed by the crossover exponent Dc, (46)

h 3 (T − Tw)Dc, (5.13)
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Fig. 14. Wetting phase diagram for the decane/methanol system in the variables bulk field
and temperature. The first-order wetting transition at bulk coexistence (h=0) is accompanied
by the prewetting line, ending in the prewetting critical point. The lower and upper spinodal
lines which merge at this point are also shown. The dashed line gives the temperature scan
corresponding to Fig. 13, for the fixed bulk field appropriate to the gravity-induced undersa-
turation in this system. It should be stressed that the prewetting line is very short, both in h
and in T/Tc. Incidentally, the short-range critical wetting point lies at T/Tc % 0.988 (which is
outside the range shown).

with Dc=3/2 for non-retarded van der Waals forces. Indeed, our best fit
of the numerical data close to Tw leads to the estimate Dc=1.51 ± 0.01 and
Tw/Tc % 0.98477. This clearly shows that the van der Waals tails of the net
forces between interfaces govern the divergence of the wetting layer thick-
ness and the surface free-energy singularity close to Tw and for h Q 0. For
prewetting in systems with short-range forces we would have Dc=1 and in
addition a logarithmic correction factor would be present.

The experimental adsorption data for decane/methanol are shown in
Fig. 15. The data show a rapid continuous rise, but accompanied by some
hysteresis, suggesting that the transition possesses features of both contin-
uous and first-order character. The obvious presence of metastability (in
the experimental data) provides fairly strong evidence for an essentially
first-order wetting transition.
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Fig. 15. Experimentally measured ellipticity versus temperature, which is proportional to the
adsorption, for the decane/methanol mixture. Besides a continuous variation, reminiscent of
critical wetting, also hysteresis has been observed, indicating the first-order character of the
transition.

For the critical exponent as our fit to the theoretical curve of Fig. 13
for temperatures below and close to Tw gives 0.45 ± 0.1 which compares
favourably with the tricritical value 1/2 and less well with the critical value
0 associated with prewetting criticality (which is just a MF critical point in
our model). The experimental estimate for this system is as=0.68 ± 0.09.
We conclude that although the transition is, strictly speaking, a first-order
transition the exponent as is not far from its tricritical value. This is also
the case for the experimental system.

5.3. Undecane/Methanol

For this system the bulk field determination proceeds like in the pre-
vious ones, taking into account the molecular weight for undecane mA=
156.30 amu and the consolute point for undecane/methanol, Tc=376 K.
We obtain h=−0.974 × 10−6. For the surface field we use EAA/kB=479 K
for undecane, and get h1=0.0414.

Concerning the surface coupling enhancement we examine the
published experimental results for the undecane/methanol interfacial
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tension, as obtained by Carrillo et al (31) at 298 K. This gives 2.01 ×
10−3 N/m. Taking as representative diameter the arithmetic mean of
sM=3.65 Å and sA=6.44 Å based on the van der Waals equation of state
with TLG

c =639 K and PLG
c =19.7 × 105 Pa for undecane, we get

s % 5.05 Å. The dimensionless interfacial tension which results after divi-
sion by kBTc and multiplication by s2 is cMA=0.0988, implying c=0.523
and hence Kc=0.137. Alternatively, we can interpolate between the data
from Kahlweit et al. (32) for chain lengths 10 and 12 and use the experimen-
tal value 2.31 × 10−3 N/m, or, in dimensionless units cMA=0.1133, so that
c=0.600 and Kc=0.180. The average of these two values, Kc % 0.158 is
only 5% away from 1/6, so that also in this case it is justified to assume the
SC lattice to work with, and to set once again g=−1/6 for the surface
coupling enhancement.

As for the previous mixtures, the short-range-forces theory places the
wetting tricritical point for g=−1/6 at f0=0.5 according to (4.1), and
h1=0.083 in view of (4.16). Since the surface field h1=0.0414 is smaller,
the short-range wetting transition is critical. It takes place at f0, w=
−h1/g=0.248, which corresponds to Tw/Tc=0.979. This is larger than the
experimentally determined transition temperature Tw/Tc=0.903, which is
consistent with the anticipation that agonistic LRF will lower the wetting
temperature. However, since we take the LRF into account only perturba-
tively, we cannot expect that Tw will be lowered sufficiently to obtain good
agreement with experiment. From (4.1) we obtain o=−4.03, which is still
well within the critical wetting regime but closer to triciticality than the two
previous mixtures. Note that this self-consistent determination of o differs
significantly from the o presented in Table I for n-undecane/methanol
(SC lattice), derived using the experimental wetting temperature as input.
Indeed, while the latter indicates that the short-range wetting transition is
already of first order (o > − 2), the current self-consistent calculation
requires the intervention of the long-range forces to drive the wetting tran-
sition first-order.

Weak long-range forces, for which for simplicity we assume the same
strength a3=0.003 as for both previous mixtures, already drive the transi-
tion clearly first-order, as is shown through the adsorption displayed in
Fig. 16. The wetting temperature is only slightly lowered to Tw/Tc=0.976,
due to the fact that our approach treats the LRF as a small perturbation
only. The adsorption curve of Fig. 16 differs somewhat from the typical
first-order adsorption signal (Fig. 2) in that the hysteresis is much smaller.
This is due to the vicinity of the system to the prewetting critical point.
Interestingly, the experimental data for this mixture displayed in Fig. 17
show a clear first-order jump but without hysteresis, unlike for decane/
methanol. The fact that the hysteresis is unobservably small is in line with
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recent experiments on other binary liquid mixtures, such as cyclohexane/
CD3OD with gravity-thinned wetting layers not thicker than about
100 Å. (47) In contrast, in almost density-matched systems, like cyclohexane/
methanol, with gravity-thinned wetting layers of about 400 Å, much larger
hysteresis is observed. This has now been understood by calculating the
activation energy for wetting layer nucleation as a function of the film
thickness. (47) Therefore, the surprising feature is not the absence of hys-
teresis for undecane/methanol, but the presence of it for decane/methanol!

Finally, obviously for this fairly strong first-order wetting transition
the critical exponent analysis immediately leads to 2 − as=1, as expected,
since the mean-field free-energy branches cross, leading to a corner in the
equilibrium free energy (discontinuous derivative).
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Fig. 16. Adsorption of the methanol-rich phase versus temperature for the model system
representing the undecane/methanol binary liquid mixture at the liquid-vapour interface. The
model parameters bulk field, surface field and surface coupling enhancement are given in the
text. The amplitude of the long-range forces favouring wetting has been chosen to be very
small, treating these forces as a weak perturbation. Note the clear first-order (pre)wetting
transition at Tw/Tc % 0.976 and the critical adsorption at Tc. The lower and upper spinodal
points are also indicated, together with the jump (dashed line) of the equilibrium order
parameter. The hysteresis is quite small.
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Fig. 17. Experimentally measured ellipticity versus temperature, which is proportional to the
adsorption, for the undecane/methanol mixture. A clear first-order transition is seen.
However, no hysteresis is observed.

6. CONCLUSIONS

In this paper we have been concerned with addressing theoretically a
variety of recently observed wetting phenomena displaying the richness of
the wetting phase diagram proposed by Nakanishi and Fisher, (22) featuring
first-order, critical and tricritical wetting. In addition, we have studied how,
for the experimental systems under consideration, the wetting phase transi-
tions are modified by taking into account approximately the effect of long-
range forces. Many authors, in particular de Gennes, and Ebner and Saam,
predicted that for long-range forces favouring wetting, critical wetting
transitions should become first-order. (4, 11) This is not what is observed in
the experiments. Mixtures of alkanes and methanol, with the methanol-rich
phase wetting the liquid-vapour interface, have been observed to pass from
continuous wetting to first-order wetting as the alkane chain length is
increased from 9 till 11. The experiments are consistent with a tricritical
wetting transition occurring at some intermediate effective chain length
between 9.6 and 10. (35)

Cross-Over Between First-Order and Critical Wetting 653



The theoretical description which we have explored here supplements
previous works on similar systems in two respects: we have taken into
account that the systems are slightly away from the conditions of bulk two-
phase coexistence, and, more importantly, we have allowed for effects of
long-range forces between interfaces, arising from the inverse power-law van
der Waals forces between the molecules.

It has been necessary to make these extensions of the theory, simply
because several paradoxes concerning the interpretation of the experiments
were up to now left unresolved. For example, the main apparent contra-
diction embodied in the observation of short-range critical wetting (1, 2) is
that van der Waals forces favouring wetting should drive the transition first-
order. Why was this not seen in the experiments? The answer that we
provide here, and which is complementary to the points of view defended
in refs. 1 and 2, is that weak long-range forces combined with a small ‘‘bulk
field’’ which takes the phases just slightly off of coexistence, do not alter
the appearance of short-range critical wetting.

We have thus obtained evidence that on the one hand critical wetting
can persist, to any reasonable degree of computational accuracy or practi-
cal observability, in slightly undersaturated systems with weak long-range
forces favouring wetting, while on the other hand first-order wetting is—
of course—the generic phenomenon. Consequently, it is fundamentally
interesting to scrutinize the cross-over between the two. The experiments
have shown (35) that this cross-over is consistent with a short-range tricritical
wetting transition scenario. Here we find that this interpretation is a good
approximation, adequate for all practical purposes, even in systems which
instead of displaying strict tricriticality, show a very short prewetting line
emerging from a first-order wetting transition at bulk coexistence. The role
of the tricritical point in the short-range forces limit is taken over by that
of the prewetting critical point in the presence of agonistic long-range
forces, no matter how weak. The two are difficult to distinguish in practice,
both as regards the order parameter singularity and concerning the critical
exponent associated with the surface free energy singularity. This exponent, as,
takes the value 1/2 for tricritical wetting and the value 0 for prewetting
criticality.

In sum, systems slightly off of coexistence can behave qualitatively
differently from those at coexistence. The most spectacular example we
have found in this regard is the possibility of a continuous-looking wetting
transition under circumstances in which the wetting transition at coexis-
tence is always of first order. This is the case when the long-range forces
are agonistic, and consequently short-range first-order wetting remains
first-order, and short-range critical wetting must turn into a first-order
transition, in principle.
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The methods we have employed and the theory we have developed are
to a large extent qualitative, at times heuristic, and eventually amount to a
simple mean-field description of the interacting many-body system. Why
should the mean-field theory be a good approximation in this case? There
are several justifications, the most decisive of which is that the width of the
critical region in which deviations from mean-field critical behaviour
should occur is far too small to be observable experimentally or in Monte
Carlo simulations for equivalent Ising-like systems with short-range forces.
This is a prediction from the latest sophisticated functional Renormaliza-
tion Group theory. The second reason is that, as soon as van der Waals
forces are added to the theory, the upper critical dimension above which
mean-field critical exponents are valid, is lowered from du=3 (short-range
forces) to du < 3. The third reason is the clarity of the investigation. We
have included the effect of a small bulk field, and of a weak substrate-
adsorbate field with algebraic decay, as complications on top of an other-
wise already rich Cahn–Landau theory. It would not be instructive to add
yet a third complication, in the form of forces arising from interface
capillary wave fluctuations, before a full understanding of the other two
refinements has been achieved. Moreover, due to the undersaturation of
the wetting phase (gravitational thinning of the wetting layer) the parallel
and transverse correlation lengths of the relevant unbinding interface
cannot get large enough for long-wavelength capillary waves to develop.
So the presence of the bulk field renders capillary-wave considerations
superfluous, at least in this system.

While adhering fully to a mean-field theory, we have also indicated
how one can arrive at the surface free-energy functional starting from a
microscopic lattice model of Ising spin-1 type. Further, we have aimed at
providing reasonable estimates for all the phenomenological parameters in
the theory, starting from microscopic system constants such as molecular
interaction potentials (pair energies and particle diameters) and molecular
weights. In this way the bulk field, surface field and surface enhancements
appropriate to the different mixtures have been related to more fundamen-
tal variables. It has not been possible to complete this scheme fully self-
consistently, and it has been necessary to use as input experimentally
measured interfacial tensions, for example, for obtaining the appropriate
lattice coordination number in the microscopic model, leading to the use of
a simple cubic lattice.

The important parameter for which we have been unable to provide a
reliable system-specific estimate is the amplitude a3 of the long-range
forces. The reason for this is that the theory requires the knowledge of the
entire function h(z) while only the leading term, related to the Hamaker
constant, is known with reasonable accuracy for a given system. To resolve
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this draw-back, we have opted for a perturbative theory, in which the effect
of weak long-range forces is examined on the wetting transitions dictated
by the theory incorporating short-range forces. We have thus fixed a3 to a
value, one order of magnitude smaller than an estimate based on the
Hamaker constant. This is in line with the experimental fact that the
physics predicted by the theory involving short-range forces is in good
accord with the observed continuous wetting phenomenon in nonane/
methanol. (1, 2) The most remarkable of our findings is that the long-range
forces are perturbative. Indeed, the inclusion of weak long-range forces
does not turn the observable critical wetting transition into a first-order
one. This seemingly contradicts previous theoretical works which indicated
that critical wetting must be ruled out for agonistic LRF. As we
emphasized, this is due to the presence of a small bulk field, turning
macroscopic wetting layers into mesoscopic ones (only hundreds of Å
thick).

As new technical theoretical advances we have achieved the computa-
tion of generalizations of spreading coefficients for systems slightly displaced
from two-phase coexistence in bulk. This is useful for continuous wetting
transitions, in the vicinity of which only one surface state is thermodynam-
ically stable. Further, we have found that the adsorption is on many
accounts a useful and well-defined order parameter, which is easy to
interpret, in contrast with the wetting layer thickness. Using the adsorption
the phenomena of (pre-)wetting and critical adsorption can be viewed on
equal footing (see Figs. 2, 5, 11, 13, and 16) and comparison with the
experimentally measured ellipticity is directly possible.

All in all, we believe that the present work elucidates the systems in as
far as mean-field theory can describe them. The additions of deviations
from bulk coexistence and the perturbative effect of long-range forces
appear crucial to a better modeling and understanding of the experiments.
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